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Abstract. Multi-species reaction-diffusion systems, with nearest-neighbor interaction on a one-dimensional
lattice are considered. Necessary and sufficient constraints on the interaction rates are obtained, that
guarantee the closedness of the time evolution equation for Ea

n(t)’s, the expectation value of the product
of certain linear combination of the number operators on n consecutive sites at time t. The constraints
are solved for the single-species left-right-symmetric systems. Also, examples of multi-species system for
which the evolution equations of Ea

n(t)’s are closed, are given.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
02.50.Ga Markov processes

1 Introduction

There is a well-established framework for equilibrium
statistical mechanics, but thermal equilibrium is a spe-
cial case, and there isn’t a corresponding straightforward
framework for investigating the properties of systems not
in equilibrium. There is no general approach to systems
far from equilibrium. Different methods have been used to
study these models. These include analytical and asymp-
totic methods, mean-field methods, and large-scale numer-
ical methods. For high-dimensional systems, mean-field
techniques give exact or reasonable approximate results.
But their results for low-dimensional systems are generally
not adequate. So, people are motivated to study stochas-
tic models in low dimensions. Models in low dimensions,
should also be in principle easier to study. Exact results
for some models on a one-dimensional lattice have been
obtained, for example in [1–17].

The term exactly-solvable have been used with dif-
ferent meanings. In [18], a ten-parameter family of
reaction-diffusion processes was introduced for which the
evolution equation of n-point functions contains only
n- or less- point functions. The average particle-number in
each site has been obtained exactly for these models. In
[19,20], the same method has been used to analyze the
above mentioned ten-parameter family model on a finite
lattice with boundaries, and in [21] a similar method has
been used to study models with next-nearest-neighbor-
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interactions. In [22] and [16], integrability means that the
N -particle conditional probabilities’ S-matrix is factorized
into a product of 2-particle S-matrices. Another method
which has been used to solve some reaction diffusion mod-
els exactly is the empty interval method, and its general-
izations.

The empty interval method (EIM) has been used to
analyze the one dimensional dynamics of diffusion-limited
coalescence [23–26]. Using this method, the probability
that n consecutive sites are empty has been calculated.
For the cases of finite reaction-rates, some approximate
solutions have been obtained. EIM has been also general-
ized to study the kinetics of the q-state one-dimensional
Potts model in the zero-temperature limit [27].

In [28], all the one dimensional reaction-diffusion mod-
els with nearest neighbor interactions which can be ex-
actly solved by EIM have been studied. EIM has also
been used to study a model with next nearest neighbor
interaction [29]. In [30], exactly solvable models through
the empty-interval method, for more-than-two-site inter-
actions were studied. In [31], the conventional EIM has
been extended to a more generalized form. Using this ex-
tended version, a model which can not solved by conven-
tional EIM has been studied.

In this article, we consider systems, in them particles
of more than one species interact on a one-dimensional
lattice. The interaction is nearest-neighbor. Each site of
the lattice, either is empty, or is occupied by one par-
ticle. In Section 2, we seek necessary and sufficient con-
ditions on the reaction rates, so that the time evolution



372 The European Physical Journal B

equation for Ea
k,n(t) is closed. This quantity is the ex-

pectation of the product of a specific linear combina-
tion of the number operators (corresponding to different
species) at n consecutive sites beginning from the kth
site. In Section 3, all single-species left-right symmetric
reaction-diffusion systems solvable through the general-
ized empty-interval method, are classified. In Section 4,
multi-species systems are investigated, which are solvable
through the generalized empty-interval method, but are
effectively single-species. In Section 5, some specific fam-
ilies of two-species systems are investigated, which are
exactly solvable through the generalized empty-interval
method. Finally, Section 6 is devoted to concluding re-
marks.

2 Models solvable through the generalized
empty-interval method

To fix notations, let us briefly introduce the multi-species
reaction-diffusion systems with nearest-neighbor interac-
tions, on a periodic lattice. Let the lattice have L+1 sites.
The observables of such a system are the operators Nα

i ,
where i with 1 ≤ i ≤ L + 1 denotes the site number, and
α with 1 ≤ α ≤ p+1 denotes the type of the particle. One
can regard α = p + 1 as a vacancy. Nα

i is equal to one, if
the site i is occupied by a particle of type α. Otherwise,
Nα

i is zero. We also have a constraint

sαNα
i = 1, (1)

where s is a covector the components of which (sα’s) are all
equal to one. The constraint (1), simply says that every
site, either is occupied by a particle of one type, or is
empty. A representation for these observables is

Nα
i := 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1

⊗Nα ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L+1−i

, (2)

where Nα is a diagonal (p + 1) × (p + 1) matrix the only
nonzero element of which is the α’th diagonal element,
and the operators 1 in the above expression are also (p +
1)× (p+1) matrices. It is seen that the constraint (1) can
be written as

s · N = 1, (3)

where N is a vector the components of which are Nα’s.
The state of the system is characterized by a vector

P ∈ V ⊗ · · · ⊗ V︸ ︷︷ ︸
L+1

, (4)

where V is a (p + 1)-dimensional vector space. All the
elements of the vector P are nonnegative, and

S ·P = 1. (5)

Here S is the tensor-product of L + 1 covectors s.
As the number operators Nα

i are zero or one (and
hence idempotent), the most general observable of such

a system is the product of some of these number opera-
tors, or a sum of such terms.

The evolution of the state of the system is given by

Ṗ = H P, (6)

where the Hamiltonian H is stochastic, by which it is
meant that its nondiagonal elements are nonnegative and

S H = 0. (7)

The interaction is nearest-neighbor, if the Hamiltonian is
of the form

H =
L+1∑
i=1

Hi,i+1, (8)

where

Hi,i+1 := 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1

⊗H ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L−i

. (9)

(It has been assumed that the sites of the system are iden-
tical, that is, the system is translation-invariant. Other-
wise H in the right-hand side of (9) would depend on i.)
The two-site Hamiltonian H is stochastic, that is, its non-
diagonal elements are nonnegative, and the sum of the
elements of each of its columns vanishes:

(s ⊗ s)H = 0. (10)

Now consider a certain class of such observables,
namely

Ea
k,n :=

k+n−1∏
l=k

(a · Nl), (11)

where a is a specific (p + 1)-dimensional covector, and
Ni is a vector the components of which are the operators
Nα

i . We want to find criteria for H , so that the evolu-
tions of the expectations of Ea

k,n’s are closed, that is the
time-derivative of their expectation is expressible in terms
of the expectations of Ea

k,n’s themselves. Denoting the ex-
pectations of these observables by Ea

k,n,

Ea
k,n := S Ea

k,nP, (12)

we have

Ėa
k,n =S Ea

k,nH P,

=S Ea
k,nHk−1,k P

+
n−1∑
l=1

S Ea
k,nHk−1+l,k+l P

+ S Ea
k,nHk+n−1,k+n P. (13)

From this, and using (3), it is seen that the necessary and
sufficient conditions that the left-hand side be expressible
in terms of Ea

k,n’s are

(s⊗ s)[(s · N) ⊗ (a · N)]H = µL(s⊗ s)[(s ·N) ⊗ (a ·N)]
+ θL(s⊗ s)[(s ·N) ⊗ (s · N)]

+ νL(s⊗ s)[(a · N) ⊗ (a ·N)], (14)
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(s⊗ s)[(a · N) ⊗ (a ·N)]H = λ(s⊗ s)[(a ·N) ⊗ (a ·N)],
(15)

(s⊗ s)[(a ·N) ⊗ (s ·N)]H = µR(s ⊗ s)[(a ·N) ⊗ (s · N)]
+ θR(s⊗ s)[(s ·N) ⊗ (s · N)]

+ νR(s ⊗ s)[(a ·N) ⊗ (a ·N)], (16)

for some arbitrary numbers λ, µL,R, θL,R, and νL,R. Using
the identity

s(b · N) = b, (17)

for an arbitrary covector b, one arrives at

(s ⊗ a)H =µL(s⊗ a) + θL(s⊗ s) + νL(a ⊗ a),
(a ⊗ a)H =λ(a ⊗ a),
(a ⊗ s)H =µR(a ⊗ s) + θR(s⊗ s) + νR(a ⊗ a). (18)

The Hamiltonian H should of course satisfy (10) as well,
and its nondiagonal elements should be nonnegative. In
this case, the evolution equation for Ea

k,n, for 0 < n <
L + 1, becomes

Ėa
k,n = θLEa

k+1,n−1 + νLEa
k−1,n+1 + θREa

k,n−1

+ νREa
k,n+1 + [µL + (n − 1)λ + µR]Ea

k,n. (19)

For n = L + 1, one has

Ėa
1,L+1 = (L + 1)λEa

1,L+1. (20)

For n = 0, from (5) we have the boundary condition

Ea
k,0 = 1. (21)

Equations (19, 20), and the boundary condition (21) are
a closed set of evolution equations for Ea

i,j ’s. These equa-
tions are quite similar to those obtained in [28]. In fact,
the case there is a special case of what considered here,
with p = 1 and a = (0, 1). Although the criterion for the
closedness of the evolution equations does depend on p
and a, the evolution equations for Ea

i,j ’s do not depend
on these. In [28], situations were considered in which λ
was zero, so that the evolution of the block comes solely
from its ends. This makes solving the evolution equa-
tions easier. Finally, since the system under considera-
tion is translationally-symmetric, if the initial condition
is translationally-invariant, the state of the system would
remain translationally-invariant at all times. In this case,
Ea

k,n does not depend on k, and one would have

Ėa
n = (θL + θR)Ea

n−1 + (νL + νR)Ea
n+1

+ [µL + (n − 1)λ + µR)Ea
n, 0 < n < L + 1,

Ėa
L+1 = (L + 1)λEa

L+1,

Ea
0 = 1. (22)

The system is left-right symmetric, iff the Hamiltonian
is invariant under permutation:

Π H Π = H, (23)

where Π is the permutation matrix:

Π(u ⊗ v) = v ⊗ u. (24)

It is easily seen that if H satisfies (23) and (18), then

µL = µR = µ, νL = νR = ν, θL = θR = θ. (25)

3 Classification of the single-species
left-right-symmetric reaction-diffusion
systems, which are solvable through
the generalized empty-interval method

For a single-species system, the vector space V is two-
dimensional. Take a covector a, which is not a multiple of
s. (The case a proportional to s is trivial, as s · N = 1).
The set B := {a⊗a, a⊗s, s⊗a, s⊗s}, is a basis for V⊗V.
If H satisfies (18) (and of course (10)), then one has the
matrix elements of the Hamiltonian in this basis. However,
not every Hamiltonian in this form represents a stochastic
system. The nondiagonal elements of the Hamiltonian in
the physical (ordinary) basis should be nonnegative. So,
for the single-species systems, the task of classifying the
systems solvable through the generalized empty-interval
method, reduces to finding the matrix elements of the
Hamiltonian in the physical basis (in terms of the cov-
ector a, and the scalars λ, µ, ν, and θ); and imposing
the criterion that the nondiagonal elements of H in the
physical basis be nonnegative. Taking the covector a like

a = (a1, a2), (26)

and noting that a1 �= a2 (otherwise a would be propor-
tional to s), and that one can rescale a without changing
the conditions (18), it is seen that one can take

a1 = ξ + 1, a2 = ξ − 1, (27)

without loss of generality. Then, imposing the criterion
that the nondiagonal elements of the Hamiltonian are non-
negative, and assuming left-right symmetry, one arrives at
the following set of inequalities.

(1 + ξ2)Λ + 2ξ2µ + 2ξθ ≥ |2ξ(Λ + µ)|,
−(1 + ξ2)(2µ + Λ) − 4ξν − 2ξθ ≥ |2[(1 + ξ2)ν

+ ξ(Λ + 2µ) + θ]|,
−2µ ≥ (1 − ξ2)Λ − 2ξ2µ − 2ξθ ≥ |2[(ξ2 − 1)ν + ξµ + θ]|,

(28)

where

Λ := −λ + 2ξν. (29)

We also define

τ :=θ − ξ,

Λ± :=Λ ± 2ν. (30)
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We have to solve the inequalities (28), for a given value
of ξ. It is seen that changing the signs of ξ, ν, and θ
simultaneously, while keeping the signs of λ, µ, and Λ
fixed, does not change the inequalities. So it is sufficient
to solve the inequalities for nonnegative ξ.

The detailed calculations can be found in the ap-
pendix. The results are the following.
i)

ξ = 1, µ = θ = 0, ν ≤ 0, 4ν ≤ λ ≤ 2ν. (31)

The reactions for systems in this class are

AA → ∅∅, with rate λ − 4ν

AA → ∅A, A∅ with rate 2ν − λ, (32)

for which the evolution equation of 〈n1 · · ·nk〉 is closed,
where ni is the number operator at the site i.
ii)

0 < ξ < 1, µ < 0 (µ = −1) (Λ−, Λ+) inside
the tetragon ABCE, τ satisfies (58). (33)

The coordinates of the vertices of the tetragon ABCE are

A
(
− 1 − ξ

1 + ξ
, 1

)
, B

(
1,

3 + ξ

1 + ξ

)
, C

(3 − ξ

1 − ξ
, 1

)
,

E
( 1 + 6ξ − 3ξ2

(1 − ξ)(1 + 3ξ)
,− 1 + 3ξ2

(1 − ξ)(1 + 3ξ)

)
,

where the first coordinate is Λ−, and the second is Λ+. As
an example in this class, take ξ = 1/2, and Λ+ = Λ− = 1,
which lead to a system with following interactions.

A∅ � ∅A, with rate
3 + 4θ

16

AA, ∅∅ → ∅A, A∅ with rate
3 + 4θ

16

AA, A∅, ∅A → ∅∅, with rate
9 − 12θ

16

∅∅, A∅, ∅A → AA, with rate
1 + 4θ

16
· (34)

For this system, the evolution equation of 〈[2n1−
(1/2)] · · · [2nk − (1/2)]〉 is closed.
iii)

1 < ξ, µ < 0 (µ = −1), τ = −ξ2 + 1
2ξ

, Λ± =
ξ ± 1

ξ
·

(35)

It is seen that here there is no allowed region for the rates,
but a single point (apart from scaling) for each value of ξ.
Systems in this class, correspond to the reactions

A∅, ∅A → ∅∅, with rate
1
2

+
1
2ξ

A∅, ∅A → AA, with rate
1
2
− 1

2ξ
, (36)

and for them the evolution equation of 〈(2n1 + ξ −
1) · · · (2nk + ξ − 1)〉 is closed.
iv)

ξ = 0, µ �= 0 (µ = −1), (Λ−, Λ+) is inside
the square A0B0C0D0. τ satisfies (57). (37)

The vertices of the tetragon A0B0C0D0 are

A0(−1, 1), B0(1, 3), C0(3, 1), D0(1,−1).

As an example in this class, take Λ+ = Λ− = 1, which
lead to a system with following interactions.

A∅ � ∅A, with rate
1
4

AA, ∅∅ → ∅A, A∅ with rate
1
4

AA, A∅, ∅A → ∅∅, with rate
1 − 2θ

4

∅∅, A∅, ∅A → AA, with rate
1 + 2θ

4
· (38)

For this system, the evolution equation of 〈(2n1− 1) · · · ⊗
(2nk − 1)〉 is closed.
v)

ξ = 1, µ �= 0 (µ = −1), (Λ−, Λ+) is inside S.

τ satisfies (70). (39)

The region S, is the region limited by the lines A1B
′, the

horizontal line passing through B′, and the line passing
through A1 with the slope −1, containing the point (1, 1),
where

A1(0, 1), B′(0, 2).

As an example in this class, take Λ+ = Λ− = 1, which
lead to a system with following interactions.

A∅ � ∅A, with rate
θ

2

AA, ∅∅ → ∅A, A∅ with rate
θ

2
AA, A∅, ∅A → ∅∅, with rate 1 − θ. (40)

For this system, the evolution equation of 〈n1 · · ·nk〉 is
closed.

4 Effectively single-species systems

For a specific (p+1)-dimensional covector, we seek Hamil-
tonians satisfying (18) with some values of λ, µL,R, νL,R,
and θL,R. There are cases, however, where p-species sys-
tems are effectively single-species. Suppose we can decom-
pose the states of the system into two subsets 1 and 2.
Corresponding to these states, one defines the covectors
E1, and E2. E1, for example, is the sum of the covectors
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corresponding to the states belonging to the first subset
(the microstates of the first state). It is clear that

E1 + E2 = s. (41)

To have an effectively two-state system, the probabil-
ity that the system goes from one of the microstates of
the state i to the state j, should not depend on the mi-
crostates. In terms of the Hamiltonian, this means

Ei H =
∑

j

H̃i
jEj. (42)

In this case, the system described by the Hamiltonian H̃
is a two-state system. If, moreover, one seeks informations
about the original system, which are expressible in terms
of only the states 1 and 2 (and not dependent on the
microstates) then the system is an effectively two-state
system. For example, if the states of a system are white,
blue, and red, one can define the states white and colored,
provided the probability that the system changes from
red to white is the same as that of changing from blue to
white. If in addition, we are only interested in probabilities
of the system being white or colored, then the system
is effectively a two-state system. Obvious generalizations
of these systems with nearest-neighbor interactions on a
lattice, are systems for which

(Ei ⊗ Ej) H =
∑
k,l

H̃ij
kl(Ek ⊗ El). (43)

An example is a system consisting of two kinds of par-
ticles (A and B) diffusing on a lattice:

AB � BA, with rate λ′

A∅ � ∅A, with rate λ

B∅ � ∅B, with rate λ. (44)

This system is effectively one-species, as far as one is con-
cerned only with probabilities of finding particles (not of
a specific type).

Now let us return to the problem of finding solutions
to (18), with a specified covector a. We want to show that
if the components of the covector a take only two values,
then the system under consideration is an effectively two-
state system (or an effectively single-species system, with
the states occupied and empty). If the components of a
take only two values, then one can write a as

a = a1E1 + a2E2, (45)

where Ei’s are covectors with the property that their com-
ponents are either zero or one, and their sum is equal to
s. It is seen that the covectors s and a are linear com-
binations of E1 and E2, and vice versa. So a result of
equations (18, 10) is that (Ei ⊗ Ej)H is a linear combi-
nation of (Ek ⊗ El)’s; that is, (43) holds. Also, one notes
that

a · N = a1E1 · N + a2E2 ·N, (46)

which means that the information we seek involves the
probabilities corresponding to only the subsets 1 and 2.
So, multi-species systems solvable through the generalized
empty-interval method, with covectors the components of
which take only two values, are effectively single-species.

5 Some two-species examples

The states of a two-species system on each site of the lat-
tice can be represented by A, B, and ∅, the latter being a
vacancy. As the first example, consider a system for which
the Hamiltonian is symmetric, which means the rate of
each reaction is equal to the rate of its reverse reaction.
Also let λ = 0 in (18). For the three-dimensional covec-
tor a, take the choice

a = (1,−1, 0). (47)

One can then solve (18) and (10) for H and µL,R, νL,R,
and θL,R. Also the rates (the nondiagonal elements of H)
should be nonnegative. These constraints lead to a system
with the following reaction rates:

AA � BB, with rate 2u + v + 2w

AB � BA, with rate 2u + v + 2w

A∅ � B∅, with rate 2w

A∅ � ∅A, with rate 2u

A∅ � ∅B, with rate 2u

A∅ � ∅∅, with rate 2v

B∅ � ∅A, with rate 2u

B∅ � ∅B, with rate 2u

B∅ � ∅∅, with rate 2v

∅A � ∅B, with rate 2q

∅A � ∅∅, with rate 2r

∅B � ∅∅, with rate 2r, (48)

with the condition

r + 2q = v + 2w. (49)

For these rates,

µL = µR = −(4u + 2v + 4w),
νL = νR = θL = θR = 0. (50)

In this example, the evolution of Ea
n’s are very simple. In

fact the evolution equations decouple and one has

Ėa
n = 2µEa

n, 0 < n < L + 1,

Ėa
L+1 = 0,

Ea
0 = 1. (51)

The second example is less trivial. Let H satisfy (23),
that is the system has left-right symmetry. Also let the
covector a be

a = (1, ξ, 0), (52)
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and λ = 0. From the first (or third) equations of (18),
one can find µ, ν, and θ in terms of the rates and the
parameter ξ. The remaining equations are linear equations
for rates. However, we have inequalities as well, namely
the rates should be nonnegative. A specific class of the
solutions can be obtained as

H =




0 b 0 b 0 0 0 0 0
0 D2 0 0 0 0 0 0 0
0 c D3 0 0 r ξg ξ(g + q) ξ(g + q)
0 0 0 D4 0 0 0 0 0
0 d 0 d 0 0 0 0 0
0 0 g f 0 D6 q 0 0
0 0 ξg c 0 ξ(g + q) D7 r ξ(g + q)
0 f q 0 0 0 g D8 0
0 0 0 0 0 u 0 u D9




,

(53)

where each diagonal element is minus the sum of the other
elements in its column, and the following relations hold
between the rates.

(1 − ξ)b = ξ[c + f + (1 − ξ)d],
(1 − ξ)(g + q) = f + (1 − ξ)d,

ξu = (1 − ξ)r. (54)

It is clear that for 0 < ξ < 1, one can always find rates
satisfying (54). With these rates, one has

µ = −(1 + ξ)(g + q),
ν = g + q,

θ = ξ(g + q). (55)

6 Concluding remarks

Among the aims of investigating reaction-diffusion sys-
tems is to find as many n-point functions (of number op-
erators) as possible. There are systems for which one can
find certain classes of these correlators.

The empty interval method was first introduced to in-
vestigate the probability of finding n neighboring empty
sites, for systems consisting of one species, with nearest-
neighbor interactions. One can generalize this method,
in several aspects. One way is to consider systems with
more-than-two-site interactions. Another way is to con-
sider multi-species systems, and ask for the expectation
of the product of certain linear combinations of the num-
ber operators. While this does not (generally) give the
densities of each specific kind of particles, it does give a
certain combination of these densities.

What was introduced here, was a set of constraints
the reaction-diffusion systems should satisfy, in order that
the system be solvable through the generalization of the
empty interval method. For example, in a system consist-
ing of particles of one kind (with nearest-neighbor inter-
action), there are 12 independent reaction-rates. If one
demands that the system be left-right symmetric, the
number of independent rates is reduced to 7. Among these,

there exists a 5-parameter family, the models of which are
solvable through the generalized empty interval method.
The classification of this family, and some examples, were
discussed in Section 3. An interesting problem may be to
classify the models satisfying the solvability conditions for
multi-species systems.

7 Appendix

We want to solve the inequalities (28), for a given value
of ξ. It is seen that changing the signs of ξ, ν, and θ
simultaneously, while keeping the signs of λ, µ, and Λ
fixed, does not change the inequalities. So it is sufficient
to solve the inequalities for nonnegative ξ.

First consider the case µ = 0. If µ = 0, and ξ = 1, then
one arrives at
i)

ξ = 1, µ = θ = 0, ν ≤ 0, 4ν ≤ λ ≤ 2ν. (56)

Another case is µ = 0, ξ �= 1. One can consider the
subcases ξ = 0 and ξ �= 0, and show that in both subcases,
Λ = θ = ν = 0, which means the Hamiltonian is zero. So,
if ξ �= 1, for any nontrivial solution, µ �= 0.

If µ �= 0, then it should be negative. One can divide
the Hamiltonian by −µ (which is like taking µ = −1). The
inequalities (18) are then rewritten as

(1 − ξ)[−(1 − ξ)Λ− + 2(1 + τ)] ≥ 0,

(1 − ξ)[(1 + ξ)Λ− + 2τ ] ≥ 0,

(1 + ξ)[−(1 + ξ)Λ+ + 2(1 − τ)] ≥ 0,

(1 + ξ)[(1 − ξ)Λ− − 2τ ] ≥ 0,

(1 + ξ)2Λ − 2ξ(1 − τ) ≥ 0,

(1 − ξ)2Λ + 2ξ(1 + τ) ≥ 0,

−(1 − ξ2)Λ + 2ξτ + 2 ≥ 0, (57)

where τ and Λ± are defined through (30). Now, two gen-
eral cases occur. Either 0 < ξ < 1, or 1 < ξ. First, take
0 < ξ < 1. Then, the inequalities (57) become

2τ ≥ −2 + (1 − ξ)Λ− =: F1,

2τ ≥ −(1 + ξ)Λ− =: F2,

F3 := 2 − (1 + ξ)Λ+ ≥ 2τ,

F4 := (1 − ξ)Λ+ ≥ 2τ,

2τ ≥ 2 − (1 + ξ)2

ξ
Λ =: F5,

2τ ≥ −2 − (1 − ξ)2

ξ
Λ =: F6,

2τ ≥ −2
ξ

+
1 − ξ2

ξ
Λ =: F7. (58)

To have solution for τ , F3 and F4 must be greater than
or equal to F1, F2, F5, F6, and F7. So, we have ten in-
equalities for Λ− and Λ+. The first four, coming from the



A. Aghamohammadi et al.: Exactly solvable models through the generalized empty interval method 377

(F3, F4) ≥ (F1, F2), are

4 − (1 + ξ)Λ+ − (1 − ξ)Λ− ≥ 0,

2 + (1 − ξ)(Λ+ − Λ−) ≥ 0,

2 − (1 + ξ)(Λ+ − Λ−) ≥ 0,

(1 − ξ)Λ+ + (1 + ξ)Λ− ≥ 0. (59)

The solution to these is the interior of a tetragon ABCD.
The coordinates of its vertices are

A

(
−1 − ξ

1 + ξ
, 1

)
, B

(
1,

3 + ξ

1 + ξ

)
, C

(
3 − ξ

1 − ξ
, 1

)
,

D

(
1,−1 + ξ

1 − ξ

)
,

where the first coordinate is Λ−, and the second is Λ+.
There remains six other inequalities for Λ− and Λ+,

to be satisfied. As all of the inequalities are linear, it is
sufficient to check the inequalities on the vertices of the
above tetragon. In fact, we have to compare the values of
F3 and F4, with those of F5, F6, and F7, at the points A,
B, C, and D. Doing so, it is seen that the problem is
only with F5 at the point D; all other inequalities are
satisfied. At the segments DA and CD, F4 ≤ F3. So we
have to solve the inequality F4 ≥ F5. The line F4 = F5

passes through A, and intersects the segment CD at the
point E:

E

(
1 + 6ξ − 3ξ2

(1 − ξ)(1 + 3ξ)
,− 1 + 3ξ2

(1 − ξ)(1 + 3ξ)

)
·

So,
ii)

0 < ξ < 1, µ < 0 (µ = −1) (Λ−, Λ+) inside the
tetragon ABCE, τ satisfies (58). (60)

For the case 1 < ξ, one can still use (57). But as (1−ξ)
is negative, the first two inequalities in (58) are reversed.
So we have

(F1, F2, F3, F4) ≥ 2τ ≥ (F5, F6, F7). (61)

From these, one should have

(F1, F2, F3, F4) ≥ (F5, F6, F7), (62)

which are twelve inequalities for Λ±. From F1 ≥ F6 and
F3 ≥ F5, one obtains

(ξ − 1)Λ+ − (ξ + 1)Λ− ≥ 0,

−(ξ − 1)Λ+ + (ξ + 1)Λ− ≥ 0, (63)

respectively. So, one has

(ξ − 1)Λ+ = (ξ + 1)Λ− =: χ. (64)

This also means that

F1 = F3 = F5 = F6 = 2τ. (65)

From F1 = F3, for example, χ is obtained:

χ =
ξ2 − 1

ξ
· (66)

It is easily seen that this satisfies (61). So, one arrives at
iii)

1 < ξ, µ < 0 (µ = −1) τ = −ξ2 + 1
2ξ

, Λ± =
ξ ± 1

ξ
·

(67)

It is seen that here there is no allowed region for the rates,
but a single point (apart from scaling) for each value of ξ.

Finally, there remains two other special cases. First,
the case ξ = 0. In this case, the first four inequalities in
(57) are not changed, and hence the first four inequalities
in (58). (One should of course put ξ = 0 in them.) The
vertices of the tetragon ABCD are now

A0(−1, 1), B0(1, 3), C0(3, 1), D0(1,−1).

In the remaining three inequalities of (57), there is no τ ,
and one reads

0 ≤ Λ ≤ 2. (68)

It is easy to see that these are satisfied inside the square
A0B0C0D0. This square is in fact the same tetragon
ABCE at the limit ξ → 0. (Note that in this limit, the
points D and E tend to each other.) So,
iv)

ξ = 0, µ �= 0 (µ = −1), (Λ−, Λ+) is inside
the square A0B0C0D0. τ satisfies (57). (69)

Finally, in the case ξ = 1, the first two inequalities
in (57) become identities, and the sixth and seventh be-
come identical to each other. So one has four independent
inequalities:

−Λ+ + 1 − τ ≥ 0,

−τ ≥ 0,

2Λ − (1 − τ) ≥ 0,

1 + τ ≥ 0. (70)

These give the allowed region for (Λ−, Λ+), as the re-
gion limited by the lines A1B

′, the horizontal line pass-
ing through B′, and the line passing through A1 with the
slope −1, containing the point (1, 1), where

A1(0, 1), B′(0, 2).

Let us call this region S. So,
v)

ξ = 1, µ �= 0 (µ = −1), (Λ−, Λ+) is inside S.

τ satisfies (70). (71)

The cases i) to v) summarize the desired classification.
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